3.7 Steller sea lion # 3.7.1 Species description The Steller sea lion (*Eumetopias jubatus*) is the only extant species of the genus *Eumetopias*, and is a member of the subfamily Otariinae, family Otariidae, superfamily Otarioidea, order Pinnipedia. The closest extant relatives of the Steller sea lion appear to be the other sea lion genera, including *Zalophus*, *Otaria*, *Neophoca*, and *Phocarctos*, and the fur seals of the genera *Callorhinus* and *Arctocephalus*. Loughlin *et al*. (1987) provide a brief but informative summary of the fossil record for *Eumetopias*. Repenning (1976) suggests that a femur dated 3 to 4 million years old may have been from an ancient member of the *Eumetopias* genus, thereby indicating that the genus is at least that old. Presumably, *Eumetopias jubatus* evolved entirely in the North Pacific (Repenning 1976). #### 3.7.2 Distribution The Steller sea lion is distributed around the North Pacific rim from the Channel Islands off Southern California to northern Hokkaido, Japan. The species' distribution extends northward into the Bering Sea and along the eastern shore of the Kamchatka Peninsula. The center of distribution has been considered to be in the GOA and the Aleutian Islands (NMFS 1992). Within this distribution, land sites used by Steller sea lions are referred to as rookeries and haulout sites. In the Bering Sea, the northernmost major rookery is on Walrus Island (Pribilof Islands) and their northernmost major haulout is on Hall Island (off the northwestern tip of St. Matthew Island). Rookeries are used by adult males and females for pupping, nursing, and mating during the reproductive season (late May to early July). Haulouts are used by all size and sex classes but are generally not sites of reproductive activity as occurs on rookeries. The continued use of particular sites may be due to site fidelity, or the tendency of sea lions to return repeatedly to the same site, often the site of their birth. Presumably, these sites were chosen and continue to be used because of their substrate and terrain, the protection they offer from terrestrial and marine predators, protection from severe climate or sea surface conditions, and (perhaps most importantly) the availability of prey resources. The movement patterns of Steller sea lions are not yet well understood. Their movement patterns from a land base (rookery or haulout) might be categorized into at least three types. First, sea lions move on and offshore for feeding excursions. Limited data are available to describe these movements (e.g., Gentry 1970, Sandgren 1970, Merrick and Loughlin 1997), but such descriptions are essential for understanding foraging patterns, nursing strategies, and energetics. Second, at the end of the reproductive season, some females may move with their pups to other haulout sites and males may "migrate" to distant foraging locations [Spaulding 1964, Mate 1973, Porter 1997]). Limited data are available indicating that animals do shift from rookeries to haulouts, but the timing and nature of these movements need further description (i.e., what distances are involved, are movements relatively predictable for individuals, do movements vary with foraging conditions, etc.). Description of these types of movements are essential for understanding seasonal distribution changes, foraging ecology, and apparent trends as a function of season. Third, sea lions may make semi-permanent or permanent one-way movements from one site to another (Chumbley *et al.* 1997, their Table 8; Burkanov *et al.* unpubl. report [cited in Loughlin 1997]). Calkins and Pitcher (1982) reported movements in Alaska of up to1500 km. They also describe wide dispersion of young animals after weaning, with the majority of those animals returning to the site of birth as they reach reproductive age. The distribution of Steller sea lions at sea is also not well understood. Their at-sea distribution is, however, a critical element to any understanding of potential effects of fisheries on Steller sea lions, and will be considered in greater detail below in the section on foraging patterns. # 3.7.3 Reproduction Steller sea lions have a polygynous reproductive system where a single male may mate with multiple females. As mating occurs on land (or in the surf or intertidal zones), males are able to defend territories and thereby exert at least partial control over access to adult females and mating privileges. The pupping and mating season is relatively short and synchronous, probably due to the strong seasonality of the sea lions' environment and the need to balance aggregation for reproductive purposes with dispersion to take advantage of distant food resources (Bartholomew 1970). In May, adult males compete for rookery territories. In late May and early July, adult females arrive at the rookeries, where pregnant females give birth to a single pup. The sex ratio of pups at birth is assumed to be approximately 1:1 (e.g., York 1994) or biased toward slightly greater production of males (e.g., Pike and Maxwell 1958, Lowry *et al.* 1982, NMFS 1992). Mating occurs about one to two weeks later (Gentry 1970). The gestation period is probably about 50 to 51 weeks, but implantation of the blastocyst is delayed until late September or early October (Pitcher and Calkins 1981). Due to delayed implantation, the metabolic demands of a developing fetus are not imposed until well after fertilization. For females with a pup, the nursing period continues for months to several years. Thorsteinson and Lensink (1962) suggested that nursing of yearlings was common at Marmot Island in 1959. Pitcher and Calkins (1981) suggested that it is more common for pups to be weaned before the end of their first year, but they also observed nursing juveniles (aged 1 to 3). Porter (1997) distinguished metabolic weaning (i.e., the end of nutritional dependence of the pup or juvenile on the mother) from behavioral weaning (i.e., the point at which the pup or juvenile no longer maintains a behavioral attachment to the mother). He also suggested that metabolic weaning is more likely a gradual process occurring over time and more likely to occur in March-April, preceding the next reproductive season. The transition to nutritional independence may, therefore, occur over a period of months as the pup begins to develop essential foraging skills, and depends less and less on the adult female. The length of the nursing period may also vary as a function of the condition of the adult female. The nature and timing of weaning is important because it determines the resources available to the pup during the more demanding winter season and, conversely, the demands placed on the mother during the same period. The maintenance of the mother-offspring bond may also limit their distribution or the area used for foraging. Relatively little is known about the life history of sea lions during the juvenile years between weaning and maturity. Pitcher and Calkins (1981) reported that females sampled in the late 1970s reached reproductive maturity between ages 2 and 8, and the average age of first pregnancy was 4.9 ± 1.2 years. These results suggest a mean age of first birth of about 6 years. The available literature indicates an overall reproductive (birth) rate on the order of 55% to 70% or greater (Pike and Maxwell 1958, Gentry 1970, Pitcher and Calkins 1981, Pitcher *et al.* in review). York (1994) derived the age-specific fecundity rates in Table 4 based on data from Calkins and Pitcher (1982). Those rates illustrate a number of important points and assumptions. First, the probability of pupping is rare (about 10%) for animals 4 years of age or younger. Second, maturation of 100% of a cohort of females occurs over a prolonged period which may be as long as 4 years. Third, the reported constancy of fecundity extending from age 6 to 30 indicates that either senescence has no effect on fecundity, or our information on fecundity rates is not sufficiently detailed to allow confident estimation of age-specific rates for animals older than age 6. Given the small size of the sample taken, the latter is a more likely explanation for such constancy. Merrick *et al.* (1995) compared pup sizes at different sites where Steller sea lion populations were either decreasing or increasing, to determine if pup size or growth may be compromised in decreasing populations. Their results were not consistent with that hypothesis; rather, they found that pups about two to four weeks of age were larger at sites in the Aleutian Islands and GOA than they were in southeast Alaska or Oregon. These observed differences indicate that at least this phase of reproduction may not be affected; that is, if females are able to complete their pregnancy and give birth, then the size of those pups does not appear to be compromised. Possible alternative explanations for the observed size differences are that pups were measured at different ages (i.e., pups in the GOA and Aleutian Islands may have been born earlier and therefore were older when weighed), or that over time, harsher environmental conditions have selected for larger size in pups born in the Aleutian Islands of the GOA. The reproductive cycle includes mating, gestation, parturition, and nursing or post-natal care. The reproductive success of an adult female is determined by a number of factors within a cycle and over time through multiple cycles (Fig. 12). The adult female's ability to complete this cycle successfully is largely dependent on the resources available to her. While much of the effort to explain the Steller sea lion decline has focused on juvenile survival rates, considerable evidence suggests that the decline may also be due, in part, to decreased reproductive success. - ! Younger females collected in the 1970s were larger than females of the same age collected in the 1980s (Calkins *et al.* 1998). As maturity is likely related to size, females in the 1980s would also be more likely to mature and begin to contribute to population productivity at a later age. - Pitcher *et al.* (in review) provide data from the 1970s and 1980s that suggests a much higher pregnancy rate after the mating season (97%; both periods), which declined to 67% for females collected in the 1970s and 55% for females collected in the 1980s. These changes in pregnancy rate suggest a large fetal mortality rate that could be a common feature of the Steller sea lion reproductive strategy (i.e., may occur even when conditions are favorable and population growth is occurring), but is more likely an indication of stress (possibly nutritional) experienced by individual females. - ! Statistically, the observed late pregnancy rates (67% in the 1970s and 55% in the 1980s) were not significantly different. The direction of the difference is consistent with the hypothesis that reproductive effort in the 1980s was compromised. - ! Pitcher *et al.* (in review) did observe a statistical difference in the late season pregnancy rates of lactating females in the 1970s (63%) versus lactating females in the 1980s (30%). This difference indicates that in contrast to lactating females in the 1970s, lactating females in the 1980s were less able to support a fetus and successfully complete consecutive pregnancies. Males appear to reach sexual maturity at about the same time as females (i.e., 3 and 7 years of age; Perlov 1971 reported in Loughlin *et al.* 1987), but generally do not reach physical maturity and participate in breeding until about 8 to 10 years of age (Pitcher and Calkins 1981). A sample of 185 harem bulls from the Marmot, Atkins, Ugamak, Jude, and Chowiet Islands in 1959 included animals 6 to 17 years of age, with 90% from 9 to 13 years old (Thorsteinson and Lensink 1962). ### 3.7.4 Survival Much of the recent effort to understand the decline of Steller sea lions has been focused on juvenile survival, or has assumed that the most likely proximate explanation is a decrease in juvenile survival rates. This contention is supported by direct observations and a modeling study, and is consistent with the notion that juvenile animals are less adept at avoiding predators and obtaining sufficient resources (prey) for growth and survival. The direct observations consist of extremely low resighting rates at Marmot Island of 800 pups tagged and branded at that site in 1987 and 1988 (Chumbley *et al.* 1997) and observations of relatively few juveniles at Ugamak (Merrick *et al.* 1988). The low resighting rates do not themselves confirm that the problem was a corresponding drop in juvenile survival, but only that many of the marked animals were lost to the Marmot Island population. Migration to other sites where they were not observed is a possibility, but unlikely. If the "loss" of these animals is viewed in the context of the overall sea lion decline in the central GOA (from 1976 to 1994 the number of non-pups counted at Marmot Island declined by 88.9% and by 76.9% at the 14 other trend sites in the Gulf; Chumbley *et al.* 1997), then a significant increase in juvenile mortality is a much more plausible conclusion. Modeling by York (1994) provides evidence that the observed decline in sea lion abundance in the GOA may have been due to an increase in juvenile mortality. York used the estimated rate of decline between the 1970s and the 1980s, and the observed shift in the mean age of adult females (≥3 years of age) to explore the effects of changes in adult reproduction, adult survival, and juvenile survival. While she pointed out that the observed decline did not rule out all other possible explanations, she concluded that the observed decline is most consistent with a decrease in juvenile survival on the order of 10 to 20% annually. However, juvenile survival may not be the only factor influencing the decline of the western population of Steller sea lions. Evidence indicating a decline in reproductive success was presented in the previous section. In addition, changes in adult survival may also have contributed to the decline. At present, survival rates for adult animals can not be determined with sufficient resolution to determine if those rates have changed over time or are somehow compromised to the extent that population growth and recovery are compromised. #### 3.7.5 Age distribution Two life tables have been published with age-specific rates (Table 4). The first was from Calkins and Pitcher (1982) and was based on sea lions killed in the late 1970s. York (1994) created a second life table using a Weibull model and the data from Calkins and Pitcher (1982) and Calkins and Goodwin (1988). York's analysis of these two data sets suggests a shift from the 1970s to the 1980s in the mean age of females older than 3 years of age. The shift was about 1.55 years, and provided the basis for her determination that increased juvenile mortality may have been an important proximate factor in the decline of Steller sea lions. That is, such a shift in mean age would occur as the adult population aged without expected replacement by recruiting young females. The most apparent limitations of these data and the resulting life tables are 1) the collected sea lions were not from the same locations and the relations between populations at different sites have not been described (e.g., were they experiencing similar trends and were their age structures comparable), 2) the data and estimated vital rates are also time-specific, and do not necessarily apply to the current population, 3) the assumption of a stable age distribution (or distributions) may be faulty even if trends at these different sites were consistent, and 4) the data set is relatively small and does not provide a basis for estimating age-specific survival rates for very young ages (0-2 years of age) or for possibly senescent older animals (say >12 years of age). Until senescence is assessed, longevity for Steller sea lions will be difficult to describe. The data reported in Pitcher and Calkins (1981) indicate that female sea lions may live to 30 years of age. A Weibull function fit to these data (York 1994) indicates, however, that fewer than 5% of females live to age 20. The present age distribution may or may not be consistent with these life tables. Nevertheless, these tables provide the best available information on vital parameters, and the present age structure of sea lions may be similar if the immediate causes of the decline (e.g., low juvenile survival or low reproductive rates) have remained relatively constant. # 3.7.6 Foraging patterns The foraging patterns of the Steller sea lion are clearly central to any discussion of the potential for interaction between this species and fisheries. A partial list of foraging studies is provided in Table 5, together with notes on the sample sizes, locations, years, and primary findings of those studies. # Methods for researching sea lion foraging behavior Current understanding of Steller sea lion foraging patterns are based on the following methods. *Observations*: Foraging patterns can be discerned, in part, simply by observational studies. Observations can be useful for identifying areas that may be important foraging sites (e.g., Kajimura and Loughlin 1988, Fiscus and Baines 1966). The inclusion of some foraging areas in designated critical habitat was based, in part, on observations that sea lions use those areas for foraging. Similarly, under certain circumstances observations can be used for identifying prey items, particularly those that may be commercially important (e.g., Jameson and Kenyon 1977). In general, however, the power of observational studies is limited to situations where sea lions bring their prey to the surface and the prey can be identified, or where the sea lions can be observed diving repeatedly and the assumption that they are foraging is reasonable. Stomach and intestinal contents: Stomach contents are generally considered to be the most reliable indication of foraging patterns. Biases may occur from a number of sources. Variable rates of digestion of soft tissues or variable retention of hard tissues (e.g., squid beaks) may result in misrepresentation of prey detection in the stomach. For example, Pitcher (1981) indicated that results from intestinal tracts may not correspond to results from stomachs. Stomach contents generally indicate prey items recently consumed, and may or may not be representative of prey items over a longer period of time. Results also may be biased by the evaluation method (e.g., use of frequency of occurrence may indicate how many animals ingested a prey type, but may not provide a good indicator of the importance of that prey; see Spalding 1964). Analyses of stomach contents have provided a large portion of our information on sea lion foraging (e.g., Calkins and Pitcher 1982, Calkins and Goodwin 1988), but under most conditions, killing for collection of stomach contents is no longer considered appropriate. Stomach and intestinal contents are now available only from dead animals or live animals that are under sedation and can be lavaged or given an enema. Scat analysis: Scats, or feces, are being used to study Steller sea lion prey selection, and have provided important information on the frequency of occurrence of various prey species in the sea lion diet (e.g., Merrick *et al.* 1997). Materials from scats, such as otoliths, can be used with additional information (e.g., size at age) to make inferences about the prey consumed (Pitcher 1981, Frost and Lowry 1986). As with stomach and intestinal contents, scats are known to be a biased index of prey selection because some prey may not have hard parts that resist digestion and can be identified in a scat, and the scat generally contains prey items consumed relatively recently (depending on the rate of passage through the digestive tract). Nevertheless, scat collections provide a non-lethal means of assessing diet and diet changes over time and space, and estimating relative frequency of occurrence of prey items in the sea lion diet. *Telemetry*: At least three types of telemetry are (or have been) used to study sea lion foraging. Very high frequency (VHF) telemetry can be used to determine presence or absence of an animal and, to a limited extent, animal location and whether it is on land or in the water. The use of VHF telemetry to determine the presence or absence of an animal can be used to infer the occurrence and length of foraging trips (e.g., Merrick and Loughlin 1997), and movement patterns between sites that can be monitored manually, remotely, or automatically by VHF receivers. Satellite-linked telemetry is being used to determine animal location and, when coupled with time-depth recorders, diving patterns (e.g., Merrick *et al.* 1994). Satellite-linked telemetry provides an opportunity to collect information on animal location without having to recapture the animal to collect stored data. At present, satellite-linked telemetry is the most cost-effective means of assessing the distribution of foraging animals and thereby determining those regions that are critical for Steller sea lions. Stomach telemetry is being developed and offers an opportunity to determine when an animal has consumed prey, rather than requiring the investigator to infer feeding from diving behavior. Stomach telemetry, in combination with satellite-linked telemetry, may provide greater understanding of foraging behavior and discrimination of at-sea activities that may or may not be related to foraging. Captive studies: Studies of animals in captivity may be useful for understanding prey selection, diving and foraging physiology, and energetics. Various studies have examined assimilation efficiency, changes in weight as a function of prey type (Fadely *et al.* 1994, Rosen and Trites *in press*), metabolic rates, and the heat increment of feeding (Rosen and Trites 1998). Energetic and nutritional studies on captive animals will likely form a basis from which dietary requirements of wild animals can be determined and understood. The issue of competition between groundfish fisheries and the Steller sea lion may be decided on the basis of demographic, ecological, or other information, but our understanding of such competition will ultimately depend on our ability to explain their energetic and nutritional needs and physiology. Fatty acid analysis: Fish species vary in fatty acid composition and therefore carry their own "fatty acid signature." Removal of small tissue (blubber) plugs from Steller sea lions and analysis for fatty acid composition can be used to identify prey types. This method of prey analysis is relatively new (e.g., Iverson 1993), but has been used successfully to identify prey types of harbor seals in different regions of Prince William Sound (Iverson et al. 1997). The NMFS laboratory at Auk Bay has developed the capability to conduct such analyses and, in the future, this approach to prey determination will likely prove useful for providing a longer-term view of sea lion diets. *Isotope analysis*: Isotope ratios for various elements differ in prey types in a manner that allows estimation of general prey category and trophic level. These analyses can be conducted using small amounts of tissue (e.g., vibrissae or whiskers) and may provide evidence of long term changes in general prey type, trophic level, or feeding strategy. #### Foraging distributions At present, our understanding of Steller sea lion foraging distribution is based on sightings at sea or observations of foraging behavior (or presumed foraging behavior) in areas such as the southeastern Bering Sea (Fiscus and Baines 1966, Kajimura and Loughlin 1988, NMFS unpublished data from the Platform-of-Opportunity Program [POP]), records of incidental take in fisheries (Perez and Loughlin 1991), and satellite telemetry studies (e.g. Merrick *et al.* 1994, Merrick and Loughlin 1997). Observations and incidental take of sea lions (Loughlin and Nelson 1986, Perez and Loughlin 1991) in the vicinity of Seguam Pass, the southeastern Bering Sea, and Shelikof Strait provided a basis for establishment of those areas as critical habitat (FR 58:45269-45285). The POP database provides our best overall view of the foraging range or distribution of Steller sea lions (Fig. 13). However, this database should be viewed with some caution. The sightings in this database were collected over a period of four decades and do not reflect any natural changes that may have occurred in sea lion foraging patterns during that period. Similarly, foraging range, as indicated by such sightings, would be expected to change over time due to the severe decline of the species in the last two decades. In addition, the database is biased as a reflection of overall foraging dispersion by the location of sighting effort. That is, a sighting at a particular location indicates sea lion presence at that site, but the lack of sightings at a site could mean that the site is not important for foraging or it could mean that there was insufficient sighting effort in that area. Also, it is not clear that each sighting represents a different animal, and it is possible that some sightings were of the same animal. Finally, the sighting database does not include information on the age and sex of the sighted animal. Nevertheless, this database and the locations of sea lions taken incidentally in groundfish fisheries (1973-1988, Perez and Loughlin 1991), indicate that sea lions disperse widely to forage throughout much of the Bering Sea and the GOA, at least as far out as the continental shelf break. Such broad dispersal may be essential to sea lion populations to take advantage of distant food resources and, as a consequence, limit intra-specific competition near rookeries and haulouts. The results of limited telemetry studies suggest that foraging distributions vary by individual, size or age, season, site, and reproductive status (i.e., is the female still supporting a pup; Merrick and Loughlin 1997). The foraging patterns of adult females differed during summer months when females were with pups versus winter periods when considerable individual variation was observed, but may be attributable to the lactation condition of the females. Trip duration for females (n = 14) in summer was approximately 18 to 25 hours. For five of those females that could be tracked, trip length averaged 17 km and they dove approximately 4.7 hours per day. For five females tracked in winter months, mean trip duration was 204 hours, mean trip length was 133 km, and they dove 5.3 hours per day. The patterns exhibited by females in winter varied considerably, from which the investigators inferred that two of them may still have been supporting a pup. Those two females continued to make relatively shorter trips (mean of 53 km over 18 hours) and dove 8.1 hours per day, whereas the other three ranged further, dove 3.5 hours per day, and spent up to 24 days at sea. Five winter young-of-the-year exhibited foraging patterns intermediate between summer and winter females in trip distance (mean of 30 km), but shorter in duration (mean of 15 hours), and with less effort devoted to diving (mean of 1.9 hours per day). Estimated home ranges (mean \pm 1 SE) were 319 \pm 61.9 km² for adult females in summer, 47,579 \pm 26,704 km² for adult females in winter, and 9,196 \pm 6799 km² for winter young-of-the-year. The sea lions used in Merrick and Loughlin's (1997) study were from the GOA (Sugarloaf Island, Latax Rocks, Marmot Island, Long Island, Chirikof Island, Atkins Island, and Pinnacle Rock), and the BSAI region (Ugamak Island and Akun Island). This information is, therefore, directly pertinent to the action areas for both the GOA and BSAI fisheries, although it is perhaps most relevant to the GOA action area. Overall, the available data seem to suggest two types of foraging patterns: 1) foraging around rookeries and haulouts and that is crucial for adult females with pups, pups, and juveniles, and 2) foraging that may occur over much larger areas where these and other animals may range to find the optimal foraging conditions once they are no longer tied to rookeries and haulouts for reproductive or survival purposes. #### Foraging depths The sea lions in the Merrick and Loughlin (1997) study tended to make relatively shallow dives, with few dives recorded at greater than 250 m (Fig. 14). Maximum depth recorded for the five summer adult females were in the range from 100 to 250 m, and maximum depth for the five winter adult females was greater than 250 m. The maximum depth measured for winter young-of-the-year was 72 m. These results suggest that sea lions are generally shallow divers, but are capable of deeper dives (i.e., greater than 250 m). The instruments used to record diving depths do not determine the purpose of a dive, and many of the recorded dives (Fig. 14) may not be indicative of foraging effort. Dives between 4 and 10 m depth may be for foraging, or they may be related to other behaviors such as social interactions or transiting between locations. For example, animals transiting to and from foraging locations during rough sea surface conditions may transit in a series of long, shallow dives to avoid such conditions. The relatively large number of dives recorded between 4 and 10 m may therefore bias the assessment of "foraging" depths for these sea lions. The results from this study also may not be indicative of diving depths and patterns for other sea lions at other times of year or in other locations. The winter young-of-the-year were instrumented in the period from November to March, when they were probably about five to nine months old and may have still been nursing. At this age, they are just beginning to develop foraging skills, which may take years to learn. The diving depths and patterns exhibited by these young-of-the-year are likely poor indicators of the foraging patterns of older juveniles (one- to three-year-olds). For example, Swain and Calkins (1997) report dives of a 2-year-old male sea lion to 252 m, and regular dives of this animal and a yearling female to 150 m to 250 m (Fig. 15). Clearly, if young-of-the-year are limited to relatively shallow depths, and older animals are capable of diving to much greater depths, then those younger animals are just beginning to develop the diving and foraging skills necessary to survive. The rate at which they develop those skills and, for example, begin to dive to greater depths or take prey at greater depths, is unknown, but probably occurs rapidly after weaning to take advantage of otherwise unavailable prey resources. # Prey, energetics and nutrition, and diversity At the least, an understanding of Steller sea lion foraging requires a listing of their prey species, a qualitative or (preferably) quantitative measure of the relative importance of different prey types, descriptions of prey characteristics and predator-prey dynamics, and an assessment of diet diversity. A (partial) listing of Steller sea lion prey species or prey types would include (not in order of priority): Atka mackerel, capelin, crabs, dogfish sharks, eulachon, flatfish, greenling, hake, halibut, herring, lamprey, lingcod, molluscs, octopus, Pacific cod, pollock, ratfish, rockfishes, salmon, sand lance, sculpins, shrimps, smelt, squid, and yellowfin sole. Qualitative or quantitative indices of prey importance might be developed on the basis of prey "selection" or "preference." However, we rarely have information on the distribution or availability of different prey types, and therefore don't have a basis for inferring "selection" or "preference" (Lowry et al. 1982, Frost and Lowry 1986). In most studies of Steller sea lion prey, rank frequency of occurrence is used as a qualitative (or semi-quantitative) index of relative importance. More quantitative estimation of the importance of different prey types is considerably more difficult. The value of a prey type should be quantified on the basis of the observed net gain in calories and nutrients resulting from predation on that prey type versus other prey types. Such a determination would require information on biomass consumed, caloric and nutrient content of that biomass, energy and nutrients gained, and energy and nutrients expended (i.e., the costs of predation). Caloric and nutrient content of different prey types are relatively easy to determine using proximate analysis, although Stansby (1976) cautioned that individuals of the same prey type may vary considerably as a function of season, site, reproductive condition, and other factors. Assimilation efficiency has also been studied (Fadely et al. 1994, Rosen and Trites in press) and appears to be relatively straightforward. Biomass consumed and costs of predation are more difficult to quantify, particularly with respect to any particular prey type. Many of the studies on Steller sea lion foraging patterns (Table 5) provide information on frequency of occurrence, but such information cannot be readily converted into biomass consumed unless additional data are provided. Biomass estimates are more readily determined from volumetric measurements of stomach contents, but can also be estimated from lengthweight relationships combined with measured lengths of prey or estimated length at age (with age based on otoliths; e.g., Frost and Lowry 1986). Costs of predation may also vary considerably by prey type, depending on the distribution, life history characteristics, and behavior of the prey. Important prey characteristics include their tissue or body composition, individual size (mass), availability, depth in the water column, their degree of association with the bottom, their reproductive behaviors, their degree of aggregation (e.g., solitary versus schooling), and their temporal and spatial distribution patterns. To date, the limited telemetry information available indicates that sea lions generally forage at depths less than 250 m. However, the available evidence from the POP database indicates that sea lions are commonly sighted (and presumably foraging) in the vicinity of the continental shelf break. If sea lions in the vicinity of the shelf break are diving to depths near the bottom, then depths of 200 m to 250 m may be more indicative of common or modal dives than extremes of their diving range. And many sea lion prey are, at one life stage or another, associated with the bottom. Predation on prey associated with the bottom is a common pinniped strategy, perhaps because the bottom limits the spatial dimensionality of the predator-prey arena and thereby limits the prey's alternatives for escape. Male Atka mackerel, for example, may be susceptible to predation because they fertilize and then guard eggs laid by the female on the bottom. Schooling behavior of prey probably enhances their value, as such schooling may increase sea lion consumption relative to costs associated with searching and capture. The spatial and temporal distributions of prey types is a critical determinant of their availability to sea lions. The consistent pattern of the Atka mackerel fishery over time indicates that aggregations of Atka mackerel are distributed in patches that are relatively predictable. Aggregations of pollock are less predictable in time and space than aggregations of Atka mackerel, but also demonstrate considerable predictability, particularly for winter and spring spawning aggregations. The availability and characteristics of prey patches (pollock, Atka mackerel, Pacific cod, or other prey) may be essential to the foraging success of sea lions. Important patch characteristics may include their size, location, persistence, composition (e.g., prey sizes) and density (number of patches per area). Unfortunately, the information available to characterize such prey patches (and evaluate their potential importance to sea lions) is limited to trawl and hydroacoustic surveys that generally provide a single broad-scale snapshot of prey distribution on an annual or less frequent basis. The quality of the sea lion diet appears to be determined not only by the individual components (species) of the diet, but also by the mix or diversity of prey in the diet. Merrick *et al.* (1997) found a correlation between a measure of diet diversity in different geographic regions of the western population and population trends in those regions. Their conclusions were that reliance on a single prey type may not be conducive to population growth; a diversity of prey may be necessary for recovery of the western population. Trites (unpubl. data) evaluated the diet and population growth data for Steller sea lions in southeast Alaska and found results consistent with those of Merrick *et al.* (1997). Unfortunately, diet diversity is a function not only of prey selection, but of the diversity of prey available. Regardless of the diversity of the prey field available, sea lions must survive on those prey. ### Foraging - integration and synthesis While much remains to be learned about Steller sea lions, the available information is sufficient to begin a description of their foraging patterns. The emerging picture appears to be that: - ! Steller sea lions are land-based predators but their attachment to land and foraging patterns/distribution may vary considerably as a function of age, sex, site, season, reproductive status, prey availability, and environmental conditions; - ! Steller sea lions tend to be relatively shallow divers but are capable of (and apparently do) exploit deeper waters (e.g., to beyond the shelf break); - ! at present, pollock and Atka mackerel appear to be their most common or dominant prey, but Steller sea lions consume a variety of demersal, semi-demersal, and pelagic prey; - ! diet diversity may influence status and growth of Steller sea lion populations; - ! the life history and spatial/temporal distribution of important prey species are likely important determinants of sea lion foraging success; - ! foraging sites relatively close to rookeries may be particularly important during the reproductive season when lactating females are limited by the nutritional requirements of their pups; and - ! the broad distribution of sea lions sighted in the POP database indicates that sea lions also forage at sites distant from rookeries and haulouts; the availability of prey at these sites may be crucial in that they allow sea lions to take advantage of distant food sources, thereby mitigating the potential for intraspecific competition for prey in the vicinity of rookeries and haulouts. The question of whether competition exists between the Steller sea lion and BSAI or GOA groundfish fisheries is a question of sea lion foraging success. For a foraging sea lion, the net gain in energy and nutrients is determined, in part, by the availability of prey or prey patches it encounters within its foraging distribution. Competition occurs if the fisheries reduce the availability of prey to the extent that sea lion condition, growth, reproduction, or survival are diminished, and population recovery is impeded. The question of whether competition occurs will be addressed in the "effects of the action" section below. #### 3.7.7 Natural predators The Recovery Plan for the Steller Sea Lion (NMFS 1992) states: "Steller sea lions are probably eaten by killer whales and sharks, but the possible impact of these predators is unknown. The occurrence of shark predation on other North Pacific pinnipeds has been documented, but not well quantified (Ainley *et al.*, 1981)." The likelihood of shark attack is probably greater for Steller sea lions off the Washington, Oregon, and California coasts than in waters further north. A killer whale attack has been documented off the Oregon coast (Mate 1973), but killer whales are probably much more frequent predators in the waters of British Columbia and Alaska (Barrett-Lennard *et al.*, unpubl. rep.). Barrett-Lennard *et al.* surveyed 126 respondents to estimate the rate of observation of sea lion/killer whale interactions. Of 492 interactions witnessed, 32 (6.5%) reportedly involved sea lion mortality. The lethal interaction rate appeared to be greatest in the Aleutian Islands region, but those results were based on the "vague recollection" of one observer of 3 kills over a 24-year period. Perhaps the most noteworthy anecdotal observation of apparent killer whale predation on sea lions occurred in 1992, when flipper tags from 14 sea lions that were both tagged and branded were found in the stomach of a killer whale dead on the beach in Prince William Sound (NMFS 1995). Barrett-Lennard *et al.* (unpubl. rep.) model sea lion mortality due to killer whales, and suggest that while such predation may account for a significant portion of natural mortality at the current low size of the sea lion population, it was not likely to have been the cause of the decline. The most recent status report on Steller sea lions (NMFS 1995) concurs and points out that relative abundance of killer whales is likely greater off southeast Alaska, where sea lion populations have been slowly increasing. Since the completion of the December 3, 1998 Biological Opinion on the possible effects of the pollock and Atka mackerel fisheries on the western population of Steller sea lions, a number of killer whale and sea lion interactions have been reported throughout the GOA and BSAI regions. Such interactions might reflect a true increase in such interactions, increased reporting of a relatively constant level of interactions, or some combination of the two. Without further scientific study of such interactions, the significance of killer whale predation to the status and trends sea lion populations can not be determined with confidence. # 3.7.8 Natural competitors Competition may take several forms. For exploitative competition to occur, the potential competitors must utilize the same resource, the availability of that resource must be limited relative to the needs of the potential competitors, and use of the available resource by one of the potential competitors must impede use by the other (Krebs 1985). Interference competition can occur even when resources are not limited if the use of the resource by one potential competitor harms another. With respect to other (nonhuman) species, Steller sea lions are most likely to compete with for food, although they may also compete for habitat (e.g., potential competition with northern fur seals for rookery or haulout space). Steller sea lions forage on a variety of marine prey that are also consumed by other marine mammals (e.g., northern fur seals, harbor seals, humpback whales), marine birds (e.g., murres and kittiwakes), and marine fishes (e.g., pollock, arrowtooth flounder). To some extent, these potential competitors may partition the prey resource so that little direct competition occurs. For example, harbor seals and northern fur seals may consume smaller pollock than Steller sea lions (Fritz et al. 1995). Competition may still occur if the consumption of smaller pollock limits the eventual biomass of larger pollock for sea lions, but the connection would be difficult to demonstrate. Such competition may occur only seasonally if, for example, fur seals migrate out of the area of competition in the winter and spring months. Similarly, competition may occur only locally if prey availability or prey selection varies geographically for either potential competitor. Finally, competition between sea lions and other predators may be restricted to certain age classes, as diet may change with age or size. ### 3.7.9 Disease Hoover (1988) lists parasites known to infect sea lions, including cestodes of the genera *Diplogonoporus*, *Diphyllobothrium*, *Anophryocephalus*, *Adenocephalus*, and *Pyramicocephalus*; trematodes of the genera *Pricetrema*, *Zalophotrema*, and *Phocitrema*; acanthocephalans of the genera *Bulbosoma* and *Corynosoma*; and nematodes of the genera *Anisakis*, *Contracaecum*, *Parafilaroides*, *Uncinaria*, and *Phocanema* (Hill 1968, Dailey and Brownell 1972, Daily 1975, Fay *et al.* 1978, Geraci 1979, Dieterich 1981). In addition, Thorsteinson and Lensink (1962) reported two types of parasites: Body louse (*Antarctophthirus michrochir*) severely infesting pups and nose mites (*Orthohalarachne diminuta*) invariably found on adults. And Scheffer (1946) reported ascarid worms (*Porocaecum decipiens*) nearly always found in adult stomachs. Hoover (1988) also lists evidence of exposure of sea lions to leptospirosis (Fay *et al.* 1978), chlamydiosis (Goodwin and Calkins 1985), and San Miguel sea lion virus (Goodwin and Calkins 1985, Barlough *et al.* 1987). Barlough *et al.* (1987) also present evidence of eight types of calici virus (including seven types of San Miguel sea lion virus and Tillamook [bovine] virus). And recent tests, indicate exposure to brucellosis (pers. comm., K. Pitcher, Alaska Department of Fish and Game, 333 Raspberry Road, Anchorage, AK 99518). Disease may have contributed to the *in utero* mortality rate observed in animals collected in 1975- 1978 and 1985-1986 (Pitcher et al. in review) but, again, that hypothesis is not substantiated by any data. While a range of different parasites, diseases, and maladies have been documented for Steller sea lions, the available evidence is not sufficient to demonstrate that these have played or are playing any significant part in the decline of the western population. # 3.7.10 Population dynamics The breeding range of the Steller sea lion covers virtually all of the North Pacific Rim from about 34° N to 60°N lat. Within this range, sea lions are found in hundreds of rookeries and haulouts. These rookery and haulout sites are frequently grouped into rookery/haulout clusters on the basis of politics, geography, demographic patterns, genetics, foraging patterns, or other reasons related to scientific study or management. Political divisions are drawn to separate animals that are found off Japan or the Republic of Korea, in Russian territories, in Alaska, British Columbia, or along the western coast of Washington, Oregon, and California. These divisions are largely for the purpose of management or jurisdiction, but may be related to sea lion population dynamics because of differing management strategies or objectives. Geographic distinctions are frequently made on the basis of variable habitat or ecosystem characteristics in differing parts of the range. For example, rookeries and haulouts in the Aleutian Islands are often separated from those in the GOA, and these two areas are again separated from southeastern Alaska and British Columbia. These distinctions may have demographic significance because of the important variability in ecosystem features such as prey resources. Sea lion rookeries and haulouts are also grouped on the basis of observed demographic trends (York *et al.* 1996). Many, if not most, descriptions of the decline of Steller sea lions begin with the statement that the decline was first witnessed in the eastern Aleutian Islands in the mid 1970s and then spread westward to the central Aleutian Island and eastward to the western GOA in the late 1970s and early 1980s. Similarly, counts are frequently presented for the area from Kenai to Kiska Island, which is considered to enclose the center of abundance for the species. Genetic studies (Bickham *et al.* 1996, Loughlin 1997) provided the basis for distinguishing western and eastern management stocks of the sea lion, and additional work may allow further differentiation of stocks. The relation between diet diversity and population trend was studied using rookery groups identified by geographic location and rates of change. The rookery groups were those identified by York *et al.* (1996). These examples indicate that, depending on the purpose at hand, the total sea lion population may be split meaningfully into subpopulations in any number of ways. However, if the purpose is to study or understand the natural (i.e., without human influence) population structure of the Steller sea lion, then the biogeography of the species must be defined more narrowly. Genetic studies may provide the best description of the result of biogeographic patterns, as they are likely the least influenced by human interaction. Demographic trends and foraging patterns may be influenced by human activities and, clearly, the artificial boundaries determined for political purposes should not have an influence on the natural biogeography of sea lions. Those natural factors that determine their biogeography include climate and oceanography, avoidance of predators, distribution of prey, the reproductive strategy of the species, and movement patterns between sites. The marine habitat of the Steller sea lion tends to reduce variation in important environmental or climatic features, allowing the sea lion to disperse widely around the rim of the North Pacific Ocean. The decline of Steller sea lions off California may indicate a contraction in their range, depending on the explanation for that decline. Avoidance of terrestrial predators must clearly be an important factor, as rookeries and haulouts are virtually all located at sites inaccessible to such predators. Distribution of prey is likely a critical determinant of sea lion biogeography, and probably determines the extent of their dispersion during the non-reproductive season. The reproductive strategy of the species, on the other hand, requires aggregation at rookery sites, and therefore likely places important limits on the species' movement patterns and dispersion. Finally, movement patterns between sites determine, in part, the extent to which such groups of sea lions at different rookeries and haulout sites are demographically independent. Steller sea lions are generally not described as migrators. Adult males, for example, are described as dispersing widely during the non-reproductive seasons, and juveniles are described as dispersing widely after weaning and not returning to the reproductive site until they are approaching reproductive age (Calkins and Pitcher 1982). Without a better understanding of movement patterns of sea lions, the geographic extent of potential fisheries effects can not be estimated with confidence. For example, we can not, at this time, describe the geographic extent of fishing for Atka mackerel at Seguam pass because we can not confidently determine whether the sea lions foraging at that site are from just Seguam and Agligadak Island rookeries, or perhaps also from Yunaska and Kasatochi Island rookeries or sites more distant. Similarly, the pollock fisheries in Shelikof Strait may have influenced the dynamics of sea lion populations at Chirikof and Chowiet Islands, or may have even farther reaching effects if, for example, sea lions from the Shumagin Islands forage in Shelikof Strait. An understanding of the natural biogeography of the Steller sea lion is essential to describe their population size or status, trends, variability, and stability, and to identify the potential effects of human activities. ### 3.7.11 Population status and trends Assessments of the status and trends of Steller sea lion populations are based largely on (a) counts of nonpups (juveniles and adults) on rookeries and haulouts, and (b) counts of pups on rookeries in late June and early July. Both kinds of counts are indices of abundance, as they do not necessarily include every site where animals haul out, and they do not include animals that are in the water at the time of the counts. Population size can be estimated by standardizing the indices (e.g., with respect to date, sites counted, and counting method), by making certain assumptions regarding the ratio of animals present versus absent from a given site at the time of the count, and by correcting for the portion of sites counted. Population estimates from the 1950s and 1960s (e.g., Kenyon and Rice 1961; see also Trites and Larkin 1992, 1996) are used with caution because counting methods and dates were not standardized, and the results contain inconsistencies that indicate the possibility of considerable measurement error at some sites in some years. Efforts to standardize methods began in the 1970s (Braham *et al.* 1980); as a result, counts conducted since the late 1970s are the most reliable index of population status and trends. For the western U.S. population (i.e., west of 144°W long.), counts of adults and juveniles fell from 109,880 animals in the late 1970s to 22,167 animals in 1996, a decline of 80% (Fig. 16; Hill and DeMaster 1998, based on NMFS 1995, Strick *et al.* 1997, Strick *et al. in press*). From the late 1970s to 1996, abundance estimates for the GOA dropped from 65,296 to 9,782 (85%), and for the BSAI region dropped from 44,584 to 12,385 (72%). Counts in Russian territories (to the west of the action area for the BSAI and GOA groundfish fisheries) have also declined and are currently estimated to be about one-third of historic levels (NMFS 1992). Counts in southeast Alaska (to the east of the action area for the GOA groundfish fisheries) are increasing slowly. For the western population, the number of animals lost appears to have been far greater from the late 1970s to the early 1990s. Nevertheless, the rate of decline in the 1990s has remained relatively high: the 1996 count was 27% lower than the count in 1990. Counts conducted in 1998 suggest that the overall decline continues (Table 6; data from T. Loughlin, pers. comm. and from Sease and Loughlin 1999, their Tables 4 and 5). The counts reported in Table 6 are for rookery and haulout "trend sites" (top) and for rookery trend sites only (bottom). Counts at rookery trend sites declined from 1996 to 1998 in all major regions except the eastern GOA (Sease and Loughlin 1999, their Table 5). In addition, the portion of (nonpup) sea lions counted on rookeries versus haulouts appears to have declined considerably during the 1990s (Sease and Loughlin 1999, their Table 7). This drop could occur for a number of reasons: a decrease in reproductive rate for females, a decrease in number of males on the rookeries, a shift in the age distribution from relatively more mature animals to relatively fewer mature animals (such as might occur with greater juvenile survival), or a shift in the timing of reproduction relative to the timing of the counts. To the extent that this shift indicates a decrease in reproductive rate, then this trend bodes poorly for near future recovery. Although the decline of the western population has occurred over extensive areas, site-by-site evaluation of the counts may be helpful for understanding the decline and anticipating the nature of threats to the species as local populations dwindle to extremely low numbers. However, changes observed at specific sites must be interpreted with caution because factors affecting counts at specific sites are generally unknown or poorly known. Perhaps more importantly, animals move between sites on temporary, seasonal, and permanent bases. Therefore, the extent to which the collection of animals at a given site represent an independent or meaningful population unit is not yet clear. For the eastern population (east of 144°W long.), counts of nonpups (adults and juveniles) have increased overall from just under 15,000 in 1982 to just over 20,000 in 1994 (Hill and DeMaster 1998). Counts of nonpups in California/Oregon were essentially unchanged from 1982 to 1996 at about 3,300. In California alone, the counts during this period represent a decline of over 50% since the first half of this century (NMFS 1995). Counts of nonpups in British Columbia increased from 4,700 to 8,100 in 1994. The increase in British Columbia likely represents partial recovery from the effects of control programs in the earlier part of the century. In 1913, 10,000-12,000 animals (including pups) were counted; in 1965, 4,000 were counted (Bigg, 1988). In southeast Alaska, counts of non-pups at trend sites have increased from 6,400 in 1979 to 8,700 in 1998 (NMFS 1995, Sease and Loughlin 1999). The number of pups born in southeast Alaska increased from ca. 2,200 in 1979 to ca. 3,700 in 1994 (NMFS 1995). Pup production increased at Hazy and Forrester Islands. Forrester Island has become the largest rookery for the entire species, with just under 3,300 pups born there in 1991 (NMFS 1995). # 3.7.12 Population variability and stability Populations change as a function of births, deaths, immigration, and emigration. During the nonreproductive season, some sea lions may move between the western and eastern populations (Calkins and Pitcher 1981), but net migration out of the western population is not considered a factor in the decline. Over the past two decades, the amount of growth observed in the eastern population is equivalent to only a small fraction of the losses in the western population. Thus, the decline must be due primarily to changes in birth and death rates. As mentioned above, computer modeling (York 1994) and mark-recapture experiments (Chumbley *et al.* 1997) indicate that the most likely problem leading to the decline is decreased juvenile survival, but lower reproductive success is almost certainly a contributing factor. Finally, adult survival has not been characterized and even small changes in the survival rate of adult females may be contributing significantly to past or current population trends. These changes in vital rates would likely lead to changes in the age structure which, in turn, may tend to destabilize populations. With declining reproductive effort or juvenile survival, populations tend to become top heavy with more mature animals (e.g., the increase in mean age of adult females described by York [1994]), followed by a drop in population production as mature animals die without replacement through recruitment of young females. The extent to which the age structure is destabilized and the effect on population growth rate depends, in part, on the length of time that reproduction and/or juvenile survival remain suppressed. Increased mortality of young adult females may have the strongest effect on population growth and potential for recovery, as these females have survived to reproductive age but still have their productive years ahead of them (i.e., they are at the age of greatest reproductive potential). Vital rates and age structures may change as a function of factors either extrinsic or intrinsic to the population. This biological opinion addresses the question of potential effects of fishery actions (i.e., extrinsic factors) on the Steller sea lion. However, the potential effects will be determined, in part, by the sensitivity of the western population to extrinsic influence, its resilience, and its recovery rate. Steller sea lions fit the description of a "K-selected" species of large-bodied, long-lived individuals with delayed reproduction, low fecundity, and considerable postnatal maternal investment in the offspring. These characteristics should make sea lion populations relatively tolerant of large changes in their environment. Thus, the observed decline of the western population over the past two to three decades is not consistent with the description of the species as K-selected, and suggests that the combined effect of those factors causing the decline has been severe. The ability of the population to recover (i.e., its resilience) and the rate at which it recovers will be determined by the same K-selected characteristics (longevity, delayed reproduction, and low fecundity), as well as its metapopulation structure. Its maximum recovery rate will likely be limited to 8% to 10% annually (based on its life history characteristics and observed growth rates of other Otariids), which means that recovery could require 20 to 30 years. The metapopulation structure of the western population may enhance or deter recovery. Dispersal of populations provides some measure of protection for the entire species against relatively localized threats of decline or extinction. And rookeries that go extinct may be more likely recolonized by seals migrating between sites. On the other hand, the division of the whole population into smaller demographic units may exacerbate factors that accelerate small populations toward extinction (e.g., unbalanced sex ratios, allee effects, inbreeding depression). Such acceleration has been referred to as an "extinction vortex" (Gilpin and Soulé 1986). Finally, any description of population stability for the Steller sea lion should be written with caution. Over the past three decades (or perhaps longer), we have witnessed a severe decline of the western population throughout most of its range. Our inability to anticipate those declines before they occurred, our limited ability to explain them now, and our limited ability to predict the future suggests that we are not yet capable of describing the stability of Steller sea lion populations. ### 3.7.13 Population projections Based on recent trends in southeast Alaska and British Columbia, prospects for recovery of the eastern population are encouraging. Population viability analyses have been conducted for the western population by Merrick and York (1994) and York *et al.* (1996). While such analyses require some assumptions, they provide a context for management and an indication of the severity and urgency of the sea lion dilemma. The results of these analyses indicate that the next 20 years may be crucial for the western population of Steller sea lions, if the rates of decline observed in recent years continue. Within this time frame, it is possible that the number of adult females in the Kenai-to-Kiska region could drop to less than 5000. Extinction rates for rookeries or clusters of rookeries could increase sharply in 40 to 50 years, and extinction for the entire Kenai-to-Kiska region could occur in the next 100-120 years. These projections are reasonable, given the severity of the overall decline (80% in about two decades) and the declines observed for specific time periods and regions. From 1985 to 1989, counts at trend sites in the central and western GOA declined by 55% and 39%, respectively. In the same time period, counts at trend sites in the eastern and central Aleutian Islands declined by 60% and 67%, respectively (data for 1985 are not available for the western Aleutian Islands). From 1989 to 1996, counts at trend sites in the eastern and central GOA dropped by 70%, and 61% respectively. These counts represent severe drops that argue that the above population projections are clearly feasible. ### 3.7.14 Listing Status On 26 November 1990, the Steller sea lion was listed as threatened under the Endangered Species Act of 1973 (55 FR 49204). The listing followed a decline in the U.S. population of about 64% over the three decades prior to the listing. In 1997, the species was split into two separate stocks on the basis of demographic and genetic dissimilarities (Bickham *et al.* 1996, Loughlin 1997), the status of the western stock was changed to endangered, and the status of the eastern stock was left unchanged (62 FR 30772). #### 3.7.15 Critical habitat description The term "critical habitat" is defined in the Endangered Species Act (16 U.S.C. 153) to mean: (i) the specific areas within the geographic area occupied by the species, at the time it is listed in accordance with the provisions of section 4 of this Act, on which are found those physical or biological features (I) essential to the conservation of the species and (II) which may require special management consideration or protection; and (ii) the specific areas outside of the geographical area occupied by the species at the time it is listed in accordance with the provisions of section 4 of this Act, upon a determination by the Secretary that such areas are essential to the conservation of the species. The ESA also states that "Except in those circumstances determined by the Secretary, critical habitat shall not include the entire geographical area which can be occupied by the threatened or endangered species." By this definition, critical habitat includes those areas that are essential to the "conservation" of a threatened or endangered species. The ESA defines the term "conservation" as: "... to use and the use of all methods and procedures which are necessary to bring any endangered species or threatened species to the point at which the measures provided pursuant to this Act are no longer necessary." That is, the status of the species would be such that it would be considered "recovered." Therefore, the area designated as critical habitat should contain the physical and biological resources necessary to support and sustain a population of a threatened or endangered species that is sufficiently large and persistent to be considered recovered. #### Establishment of Critical Habitat The areas designated as critical habitat for the Steller sea lion were determined on the basis of the available information on life history patterns of the species, with particular attention paid to land sites where animals haul out to rest, pup, nurse their pups, mate, and molt, and to marine sites considered to be essential foraging areas. The foraging areas were determined on the basis of sightings of sea lions at sea, incidental catch data (Loughlin and Nelson 1986, Perez and Loughlin 1991), and foraging studies using satellite-linked tracking systems. Critical habitat areas were determined with input from NMFS scientists and managers, the Steller Sea Lion Recovery Team, independent marine mammal scientists invited to participate in the discussion, and the public. The proposed rule for establishment of critical habitat for the Steller sea lion was published on 1 April 1993 (58 FR 17181), and the final rule was published on 27 August 1993 (58 FR 45269). The following areas have been designated as critical habitat in the action area of one or more of the proposed fisheries (Fig. 17). (a) Alaska rookeries, haulouts, and associated areas. In Alaska, all major Steller sea lion rookeries identified in Table 1 [their Table 1] and major haulouts identified in Table 2 [their Table 2] and associated terrestrial, air, and aquatic zones. Critical habitat includes a terrestrial zone that extends 3,000 feet (0.9 km) landward from the baseline or base point of each major rookery and major haulout in Alaska. Critical habitat includes an air zone that extends 3000 feet (0.9 km) above the terrestrial zone of each major rookery and major haulout in Alaska, measured vertically from sea level. Critical habitat includes an aquatic zone that extends 3,000 feet (0.9 km) seaward in State and Federally managed waters from the baseline or basepoint of each major haulout in Alaska that is east of 144° W long. Critical habitat includes an aquatic zone that extends 20 nm (37 km) seaward in State and Federally managed waters from the baseline or basepoint of each major rookery and major haulout in Alaska that is west of 144° W long. Three special aquatic foraging areas in Alaska. Three special aquatic foraging areas in Alaska, including the Shelikof Strait area, the Bogoslof area, and the Seguam Pass area. - (1) Critical habitat includes the Shelikof Strait area in the GOA which . . . consists of the area between the Alaska Peninsula and Tugidak, Sitkinak, Aiaktilik, Kodiak, Raspberry, Afognak and Shuyak Islands (connected by the shortest lines): bounded on the west by a line connecting Cape Kumlik (56°38"/157°26'W) and the southwestern tip of Tugidak Island (56°24'/154°41'W) and bounded in the east by a line connecting Cape Douglas (58°51'N/153°15'W)and the northernmost tip of Shuyak Island (58°37'N/152°22'W). - (2) Critical habitat includes the Bogoslof area in the Bering Sea shelf which . . . consists of the area between 170°00′W and 164°00′W, south of straight lines connecting 55°00′N/170 00′W and 55°00′N/168°00′W; 55°30′N/168°00′W and 55°30′N/166°00′W; 56°00′N/166°00′W and 56°00′N/164°00′W and north of the Aleutian Islands and straight lines between the islands connecting the following coordinates in the order listed: ``` 52°49.2′N/169°40.4′W; 52°49.8′N/169°06.3′W; 53°23.8′N/167°50.1′W; 53°18.7′N/167°51.4′W; 53°59.0′N/166°17.2′W; 54°02.9′N/163°03.0′W; 54°07.7′N/165°40.6′W; 54°08.9′N/165°38.8′W; 54°11.9′N/165°23.3′W; 54°23.9′N/164°44.0′W ``` (3) Critical habitat includes the Seguam Pass area which . . . consists of the area between 52°00′N and 53°00′N and between 173°30′W and 172°30′W. # Physical and biological features of Steller sea lion critical habitat For the Steller sea lion, the physical and biological features of its habitat that are essential to the species' conservation are those that support reproduction, foraging, rest, and refuge. Land or terrestrial habitat is relatively easy to identify on the basis of use patterns and because land use patterns are more easily observed. The areas used are likely chosen because they offer refuge from terrestrial predators (e.g., are inaccessible to bears), include suitable substrate for reproductive activities (pupping, nursing, mating), provide some measure of protection from the elements (e.g., wind and waves), and are in close proximity to prey resources. Prey resources are the most important feature of marine critical habitat. Marine areas may be used for a variety of other reasons (e.g., social interaction, rafting or resting), but foraging is the most important sea lion activity that occurs when the animals are at sea. Two kinds of marine habitat were designated as critical. First, areas around rookeries and haulouts were chosen based on evidence that many foraging trips by lactating adult females in summer may be relatively short (20 km or less; Merrick and Loughlin 1997). Also, mean distances for young-of-the-year in winter may be relatively short (about 30 km; Merrick and Loughlin 1997). These young animals are just learning to feed on their own, and the availability of prey in the vicinity of rookeries and haulouts must be crucial to their transition to independent feeding after weaning. Similarly, areas around rookeries are likely to be important for juveniles. While the foraging patterns of juveniles have not been studied in the BSAI region, it is possible that they depend considerably on resources close to haulouts. Evidence indicates that decreased juvenile survival may be an important proximate cause of the sea lion decline (York 1994, Chumbley et al. 1997), and that the growth rate of individual young seals was depressed in the 1980s. These findings are consistent with the hypothesis that young animals are nutritionally stressed. Furthermore, young animals are almost certainly less efficient foragers and probably have relatively greater food requirements which, again, suggests that they may be more easily limited or affected by reduced prey resources or greater energetic requirements associated with foraging at distant locations. Therefore, the areas around rookeries and haulouts must contain essential prey resources for at least lactating adult females, young-of-the-year, and juveniles, and those areas were deemed essential to protect. Second, three areas were chosen based on 1) at-sea observations indicating that sea lions commonly used these areas for foraging, 2) records of animals killed incidentally in fisheries in the 1980s, 3) knowledge of sea lion prey and their life histories and distributions, and 4) foraging studies. In 1980, Shelikof Strait was identified as a site of extensive spawning aggregations of pollock in winter months. Records of incidental take of sea lions in the pollock fishery in this region provide evidence that Shelikof Strait is an important foraging site (Loughlin and Nelson 1986, Perez and Loughlin 1991). The southeastern Bering Sea north of the Aleutian Islands from Unimak Island past Bogoslof Island to the Islands of Four Mountains is also considered a site that has historically supported a large aggregation of spawning pollock, and is also an area where sighting information and incidental take records support the notion that this is an important foraging area for sea lions (Fiscus and Baines 1966, Kajimura and Loughlin 1988). Finally, large aggregations of Atka mackerel are found in the area around Seguam Pass. These aggregations have supported a fishery since the 1970s, and are in close proximity to a major sea lion rookery on Seguam Island and a smaller rookery on Agligadak Island. Atka mackerel are an important prey of sea lions in the central and western Aleutian Islands. Records of incidental take in fisheries also indicate that the Seguam area is an important for sea lion foraging (Perez and Loughlin 1991). While many of the important physical and biological elements of Steller sea lion critical habitat can be identified, most of those features (particularly biological features) cannot be described in a complete and quantitative manner. For example, prey species within critical habitat can not be described in detail or with a demonstrated measure of confidence, and the lack of such information is an important impediment to the analysis of fishery effects. Walleye pollock, Atka mackerel, Pacific cod, rockfish, herring, capelin, sand lance, other forage fish, squid, and octopus are important prey items found in Steller sea lion critical habitat but for most (if not all) of these species, we are not able to reliably describe their abundance, biomass, age structure, or temporal and geographic distribution within critical habitat with sufficient clarity and certainty to understand how they interact with Steller sea lions or other consumers, including fisheries. Atka mackerel may be one of the more easily characterized sea lion prey items, but we can not describe their onshore and offshore movements, their distribution inside and outside of critical habitat or in the vicinity of rookeries and haulouts, the relation between eastern and western stocks (or whether separate stocks exist), the causes for their (apparent) two- to three-fold changes in abundance over the last two decades, and so on. Pollock appear to be considerably more dynamic in their spatial and temporal patterns, and their presence within Steller sea lion critical habitat is even more difficult to describe in a detailed or quantitative fashion. ### Critical habitat and environmental carrying capacity Prey resources are not only the primary feature of Steller sea lion critical habitat, but they also appear to determine the carrying capacity of the environment for Steller sea lions. Therefore, the concepts of critical habitat and environmental carrying capacity are closely linked: critical habitat reflects the geographical extent of the environment needed to recover and conserve the species. The term "environmental carrying capacity" is generally defined as the number of individuals that can be supported by the resources available. The term has two main uses: first as a descriptive measure of the environment under any given set of circumstances, and the second as a reference point for the environment under "natural" conditions (i.e., unaltered by human activities). Thus, the definition can have markedly different implications depending on whether it is used as a reference point for the natural carrying capacity of the environment, or the carrying capacity of the environment as it may have been altered by human-related activities. The changes observed in the 1970s and 1980s in Steller sea lion growth, reproduction, and survival are all consistent with limited availability of prey. At this time, the best scientific and commercial data available are not sufficient to distinguish the relative influences of natural (i.e., oceanographic) factors versus human-related activities (i.e., fisheries) on the availability of prey for sea lions. The notion that the observed changes in sea lion vital parameters are consistent with a change in "carrying capacity" does not necessarily mean that the changes are entirely natural. If carrying capacity is defined as a measure of the environment under any set of conditions, then that capacity could also have been reduced by fisheries. That is, natural and human-related changes to the carrying capacity are not mutually exclusive; both types of factors may have been operating at the same time. Natural and human-related factors that may have affected Steller sea lions or their environment in the past are described in the next section.